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1. Introduction 

indexed categories are useful in dealing with families, more precisely families 
indexed by objects in some suitable category. The fundamental  operation is the 
substitution of  a morphism a in that category into a family, giving a functor a*. 
However, in the important  cases, fl*a* is not equal to (ceil)* but only isomorphic 
to it, and for everything to work properly these isomorphisms must satisfy co- 
herence conditions. Then, when working with indexed categories, these 
isomorphisms keep coming up and large diagrams involving them must commute. 
These diagrams are such that it would be very surprising if they didn' t ,  and in the 
first stages of  work it is always assumed that they do. But in the end, their com- 
mutativity must be checked, and if indexed categories are to be useful as a tool for 
studying topoi and related categories, an efficient way must be found to deal with 
these diagrams. That  is to say we want a coherence theorem. 

The first categorical coherence theorem was MacLane's for monoidal  categories 
[9] (see also [10]). A monoidal  category is essentially the same as a bicategory with 
one object, and this coherence theorem extends without trouble to bicategories. 
This, together with the relevant definitions, is given in Section 2. 

In Section 3, the definitions of indexed category, functor,  and natural trans- 
formation, and the coherence conditions they must satisfy are set down carefully. 
Then a bicategory is constructed for which the previous theorem specializes to a 
coherence theorem for indexed categories. 

However the canonical maps thus obtained are not sufficient to efficiently carry 
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out the calculations we want in indexed categories, so in Section 4 we extend Our 
class of canonical maps. We then get a coherence theorem for these. 

In the last section we give some examples of the coherence theorem in action. 

2. Bicategories 

A bicategory ~ (B~nabou [1]) consists of objects A, B, C, ... and for each pair of 
objects, A and B, a category 23(A, B). The objects of ~(A, B) are called morphisrns 
(or 1-cells) of ~ and the morphisms of ~(A, B) are the 2-cells of 9.  Composition 
in ~(A, B) is denoted by juxtaposition. For any three objects, A, B, C, there is given 
a composition functor 

~(B, C) ×~(A,  B)~YS(A, C) 

( G , F ) ~ G ® F  

which is unitary and associative up to coherent isomorphisms. 
The functoriality of ® means that the ® of two identity 2-cells is an identity and 

that we have the middle four interchange law, i.e. 

1G® 1F= 1G® F and (UEUl)(~(tEll)=(UE(~t2)(UI(~tl) 

for suitably composable morphisms ui and ti. That ® is associative means that for 
any 1-cells 

F G H 
A ,B  , C  ,D 

we are given an isomorphism 

aH, G,V : (H® G) ® F ~ H ®  ( G ® F )  

natural in F, G, and H. To say that @ is unitary means that for every object A we 
are given a morphism 1A :A ~ A  and for every morphism F:A-- ,B isomorphisms 

bF:F®IA~F ,  CF: 1B@F~F 

natural in F. These isomorphisms are required to satisfy the following coherence 
conditions: 

(B1) ax®H,a,F , ( K ® H ) ® ( G ® F )  ( ( K ® H ) ® G ) ® F  

aK, H,G(~ F 

( K ® ( H ® G ) ) Q F  

aK, H®G,F 

aK, It, G®F 

K ® ( ( H ® G ) ® F )  , K ® ( H ® ( G ® F ) )  
K®aH, G,F 
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(B2) (G® 1B)®F 

bG®F~ 

aG, 1 s, F 
, G ® ( 1 B ® F  ) 

G ® F / G @ c F  

A bicategory with a single object is essentially a monoidal  category, so we view 
bicategories as generalized monoidal  categories. In fact the coherence colnditions 
gi~;en here are Kelly's refinement of those for monoidal  categories [7, p. 21] and are 
so~:newhat different from [1]. 

A bicategory in which all a, b, c, are identities is called a 2-category. 
We want to prove a coherence theorem for bicategories, which would say that any 

diagram made up of a, b, and c's commutes. In a given bicategory it may happen 
that certain relations, such as G ® F = G ' ® F ' ,  hold by accident and this must be 
avoided in order to obtain our theorem. So, following Laplaza [8], we construct a 

new bicategory ~ as follows. The objects of  ~ are the same as those of ~.  The mor- 
phisms of  ~ are non-associative words of  composable morphisms of ~.  These are 
defined inductively by: 

(1) If F : A ~ B  is a morphism of ~,  then rF1 : A ~ B  is a morphism of  !~. 

(2) If WI:A--*B and W2:B--,C are morphisms of  ~f3, then so is 
(14::. Q WI) : A-~C.  

Now, define a function e which associates to each morphism of  !~ the morphism 
of !~ obtained by removing the F 1 and evaluating. Thus 

e(rF1)=F and e(W2® W1)=e(Wz)®e(W1). 

A 2-cell f :  W ~  W' in ~[9 is defined to be a 2-cell f :  eW- - , eW '  in ~.  Composi t ion 
of 2-cells is performed in ~ and thus e becomes an equivalence of  categories 
~(A,  B)--*~(A, B). There is an obvious ® on the morphisms of  ~ which trivially 
extends to the 2-cells. If  aw~" w2, w,,bw, cw are taken to be aew3,~w2.cw~,b~.w,C~w 
respectively, ~9 becomes a bicategory and e gives a strict homomorphism of  
bizategories 9 3 3 ~ .  

Let ~ be the smallest subbicategory of ~ with the same objects and the same 
morphisms. Thus ~ must contain all instances of  a, b, c, their inverses and must be 
closed under composit ion and ® .  The 2-cells of ~ are called the canonical 2-cells 
of ~ (or of ~) .  They are all invertible. 

Theorem. To each morph&m W : A ~ B  in ~ there is associated a morphism 
a W :  A ~ B  and a canonical 2-cell Sw : W-*aW.  For W, W" : A - , B  there is at most 
one canonical 2-cell W-~ W'  and there is one i f  and only i f  a W =  aW' .  

Pr(~of (outline). Although the formal set up is different, the substantial part of the 
prc of  is the same as for the monoidal case [10, p. 162] so we content ourselves with 
giving the general idea. 

We call a W  the standard form of W, and it is obtained by dropping all identities 
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(unless W is of the f o r m  F1A l) and moving all parentheses so that they end at the 
right. Thus 

t r ( (K® ( H ®  G)) ® (1B Q F) )  = K ®  ( H ®  (G ® F)) .  

Then sw: W-- ,aW is a composite of elementary canonical maps (those contain. 
ing only one instance of  a, b, or c, and no inverses); one involving b or c for 
each identity dropped and a number involving a required to move the parentheses 
to the right as in the proof  of  the 'general associative law'.  If  aW=trW',  then 

-1 W--o W' Sw,Sw: is a canonical map.  Conversely, if there is a canonical map 
W ~  W', then aW= trW' as can be seen by inspecting the domains and codomains 
of  the elementary canonical maps.  

For uniqueness we show that  for any canonical map c:  W ~  W' 

¢ 

W , W'  

s. l 1 
a W  a W '  

commutes.  It is sufficient to show this for c elementary, as every canonical map is 
a composite of elementary ones and their inverses. 

Then the proof  is by simultaneous induction on the length and rank of W. These 
quantities are defined recursively by 

and 

length(rF l) = 1, 

length(W 1 ® I412)= length( W l) + length(W2), 

rank( r 1A 1) = 1, 

rank(rF  1) = 0 for F ¢  1, 

rank(W1 ® W2) = rank(Wl) + rank(W2) + length(W1) - 1. 

The proof  is then wrapped up by considering cases just as in loc. cit. [] 

This proof  can also be viewed as an application o f  the Newman Diamond Lemma 
(see [12] or [4]). The theorem itself is a special case of  a much more general 
coherence theorem formulated at the end of  B6nabou's thesis [2]. 

3. Indexed categories 

Let S be a ca tegory  with finite limits. For example S might be an elementary 
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topos, which is where many of the applications lie. S-indexed categories, functors, 
and natural transformations were defined in [13, p. 7,8] but the concepts were 
somewhat obscured by the introduction of functors 'defined up to' certain specified 
isomorphisms. The definitions given below are somewhat different in that these are 
avoided. In the terminology of Gray [5, p. 40-45], an S-indexed category is nothing 
but a homomorphic pseudo-functor S °p--, ~at, an S-indexed functor a quasi-natural 
transformation in which the a are isomorphisms, and an indexed natural transfor- 
mation a modification. Pseudo-functors were introduced by Grothendieck. See [6, 
p. i45-194], where their relationship with fibrations is also discussed. They are also 
a special case of morphisms of bicategories [1, p. 47]. 

Because it is difficult to find all the definitions we need, and in the generality we 
want, in one place in the literature we give the definitions in full. This will also serve 
to fix notation. 

An S-indexed category d consists of the following data: 
(1) for each I t  S, a category A 1, 
(2) for each a :  J - - * I ~ S  a functor a* : A I ~ A  J, 
(3) for each composable pair K /~ ~j a , I e S ,  a natural isomorphism 

~) for each I ¢  S, a natural isomorphism ~t (It)*"-' IAG subject to the following 
coi~erence conditions: 

(C!) for eachcomposab le t r ip l eL  )' ,K B , j  a , I i n S  

y*B*a* 

OB, yU* 

(By)*a* 

, 

, ( a B e ) * ,  

and 

(C2) for each a" J - ~ I e  S, 

~lz, a = ~*1]/I " a * l ~ ' ~ a * .  

When condition (C1) is rewritten as 0ap, yo(y*O~)=0a,~yo(0B, ya *) it is the 
analogue of the 2-cocycle condition in the cohomology of groups, with two sided 
operators. This analogy has also been noted by B. Mitchell [11]. 

If .# and .~ are indexed categories, an i n d e x e d f u n c t o r  F :  .~ ~ .,~ consists of the 
fe!~owing data: 

i )  for each I t S ,  a functor FX: A ~ B  t, 
(2) for each a : J ~ I ~ S  a natural isomorphism 0~ : t~*F1~FJt~ *, subject to the 

condition 
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(F) for each composable pair K ~ #  J a ,  I in S, 

f l * ~ * F  I 

fl*O~ l 

f l*FJot * 

op~, ] 

FK fl*u* 

Oa'BFt , (O~fl),F I 

O~ 

, FK(otfl) * . 

If F, G:,#---,,~ are two indexed functors, an indexed natural transformation 
t : F ~ G  consists of a natural transformation t I : F r o g  t for each l e S ,  such that 

(NT) for each a'J--, l ,  

a *F I , u*Gz 

} GJt~* F Jot * 

~*t I 

t JR * 

Note. In the above-mentioned references there is an extra condition on pseudo- 
functors which would be, in our case, 

(C3) for every a :  J ~ L  

0~,1, = ~ ju*"  l~a*~a* 

and an extra one on quasi-natural transformations which would be 
(F2) for every L 

I~FI ol, , FIl~ 

ql l F l ~  ~ F  l llt l 
~'F I 

Here, where the 0 and ~u are isomorphisms, C3 follows from CI and C2 and F2 
follows from F and C2, as we shall see after we have constructed the bicategory 
associated with S-indexed categories. 

As mentioned in [5, p. 45], S-indexed categories, functors, and natural transfor- 
mations form a 2-category S-inb. 

The vertical structure of S-inb is defined in terms of that of ~af, i.e. if t :F-,F' 
and t ' :F'~F" are indexed natural transformations, t ' t:F-,F" is defined by 
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(t't)x= t d t  ~, and l F by ( I F ) / =  1FX. This gives the category structure of S-inb(,4, ,#). 
For F" ,c¢ --* .~ and G • ~ ~ g" indexed functors we define the horizontal  composite 

GF # -> ~ • ~ as follows: For every I in S, (GF) I = GIF I and for every a J - ) I  the 0a 
for GF is given in 

u , ( G F ) t  Oa , (GF)Jot* 

(Fc~ 

ct*GIF / , G J a , F  ! , GJFJot,  
t9 a F I G Jo a 

The identity indexed functor 1~ is defined by (1~)~= 1A' with 0a = la*. 
If t : F--)F'  and u" G ~ G ' ,  the horizontal composite u • t" GF-+G'F '  is defined 

in terms of the ordinary horizontal composition of  natural t ransformations 
(u * t) z = u I * t I. 

The details showing that  these operations do make S-inb into a 2-category are 
straightforward and left to the reader. 

7"o apply our coherence theorem for bicategories to S-indexed categories, we con- 
strict a bicategory 2~ as follows. The objects (0-cells) of  ~ are to be the objects of  
S and the objects of S-inb, and ~ as a bicategory is to include the disjoint union of  
the 2-category S-irtb considered as a bicategory and the category S considered as a 
locally discrete bicategory (i.e. all 2-cells are identities). For each A ~ A x there is to 
be a morphism A • I ~ . 4 ,  and for each a : A-+A'  in A x a 2-cell a" A --+A' in 2~. Thus 
~(L,~i )=A I. If  J u ) I  A),~¢ F j~ are morphisms of  ~ ,  we define F ® A = F X A  

and A ® u = a * A .  These extend canonically to functors ®"  A1×S-inb(,4, ~)--->B I 
and ® • [J, I] × AI--*A J. We also use ® to denote composition in S and horizontal  

composition in S-inb. 
We now show that 23 is a bicategory. 
~r~ what follows we shall refer to the following diagram of morphisms of  

L ~' ) K # - ~ J a - - ~ I  A F G H 

It is only necessary to define the maps a, b and c and check the conditions in those 
cases involving A,  since S and S-inb are already bicategories. 

1. Associativity (definition o f  a) 

(i) ( A Q a ) ( ~ f l  , A ® ( a ® f l )  

B * a * A  , ( a ~ ) * A  , 
0~, ~(A) 
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, F ®  (A ®or) 
(ii) F¢ 

a , F l  A -z > F j ( a , A  ) , 
O~(A) 

aG, F,A 
( G ® F ) ® A  , G ® ( F ® A )  

(GF)~A , GXFXA . 

laws (definition o f  b and c) 
(iii) G 

bA 
A ® I  x ~A 

I~A ~yl(A) , A , 

" I : j ® A =  I ~ A = A .  

)entagon law (B1) 
(iv)/-/ 

~'*fl*a*A ' 

Y*0r~,B 1 

~,*(afl)*A 

, ( f l ? , ) * a * A  

, ( ~ f l y ) * A ,  
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(ii) F®A @a®fl: 

f l*a  *FIA 

'6"0~ 1 

fl*FJot*A 

O/~a*j. 

FK fl*a *A 

(]) c~, fl F I 

K F ~)c¢,8 

, (a,6)*FrA 

Oap 

, F~:(afl)*A , 

(iii) G®F®A ® a :  

a*(GF)~A 

a*G1FtA 

OaFl l 

G J o ~ * F I A  

Oa 

G loot 

' ( G F  f l a * A  

, GIF1ot*A 

(iv) H@G@FQA: 

((HG)F)~A 

(H(GF))tA 

1 
HI(GF)~A 

, (HG/FIA 

, HI~ ; I F I A  . 
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4. Condition (B2) 

(i) A ®  11®a:  

~l/,a 
a*lTA ' ( lza)*A 

(ii) F ®  I+,, @A. 

(F1 +/)tA = x i ' F  I~jA 

Thus ~ is a bicategory and all results about bicategories can be applied to it, thus 
yielding results about  indexed categories. For example, for monoidaI categories, the 
pentagon law and the law relating the left and right unit isomorphisms (our B1 and 
B2) imply two more conditions on the unit isomorphisms (see [10, p. 159]). Of 
course this extends trivially to bicategories giving the commutativity of 

and 

a 
(G®F)® IA ' G®(F® 1 A) 

b X G ® F / G ® b  

a 
(lc®G)®F ,1 ® ( G ® F )  

I f  we apply the first of  these conditions to the situations 

and 

lr A F 
I '" " I ' , ~  ' :S~' 

Ij Ot A 

in ~ we get 

I~FIA ObA 

~usFIA X 
"~F~A 

,F'I?A 
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and 
0~, I~(A) = ~uja*A : lTa*A ~ a * A  

which are F2 and C3 referred to above. 

The canonical maps in ~,  when translated into indexed category notation, are 
those built out of qL ~, 0 and their inverses and u * F  I, etc. For example both sides 
of the rectangle below are canonical maps (thus by the coherence theorem they are 

e q ~ ) :  

fl,GJa,FI A fl*GSqlJ Ia*FtA ~ fl*GJI~a*F?A 

~O*O~ I FIA fl*obtct*FlA 

fl*a*G1FIA 

[ C~B, aGIFIA 

(ctfl)*GIFIA 

l ouflFIA 

GK(ctfl)*F~A GXO~IaFIA 

fl*I ~GJa*FIA 

OF, IjGJu*FIA 

fl*GJa*FIA 

I OBa*F1A 

GK fl*a*FtA . 

In the standard form of a word, all identities are dropped, the indexed functors 
come first each with its exponent, and then all the morphisms grouped together 
under the same star. For example, if none of F, G, a, fl is an identity, then all vertices 
in the above diagram have the same standard form GKFK(afl)*A. 

4. Coherence for indexed categories 

The class of canonical maps obtained from the bicategory constructed in the 
previous section are not sufficient to deal with most of the situations arising in in- 
dexed categories. For example, when defining internal diagrams (see the next sec- 
tion), one of the conditions is (re ~a)(z~a) = y*a. Strictly speaking this condition does 
not make sense because rt~'a and ~z6~a do not compose, among other things. It is 
understood, however, that certain canonical maps must be introduced for it to make 
sense and, with a routine interpretation, there is only one way to do it. Thus the 
ma~:~ between the codomain of x~'a and the domain of rc~'a is 

y~cg~A can , (017~0)*A (0O7~1)*A can 
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But for canonical maps to make sense we must be in 5 ,  i.e. the domains and co- 
domains must be words, in this case all of length three. In ~B, 

(O~rCo)*A =A ®(OI®Z~o) and (OoZq)*A =A ®(Oo®~Zl) , 

are two completely different words .  Thus the above composite is not a canonical 
map. In fact the reason we constructed ~ in the first place was exactly to avoid this 
sort of situation, where domains and codomains match up because of accidental 
equalities in ~. 

However, in the case of  indexed categories, this equality was definitely intended 
and can hardly be called accidental. So we want to include this sort of equality, 
arising from equations in S, in our canonical maps for indexed categories. 

For a : J ~ I  and fl : K ~ J  morphisms in S, the words a ® f l  and a]~ both evaluate 
to the same thing in ~,  namely aft. Let da,• : a®f l -~a f l  be the unique 2-cell in 
which projects to the identity on aft. All d~, B are isomorphisms. Let ~ be the 
smallest subbicategory of  ~ containing all objects and 1-cells of ~[~ and all instances 
of d~,p and d ~ .  Thus ~ is the smallest class of 2-cells containing all instances of 
a, b,c and d, their inverses, and closed under composition and ® .  

A canonical map, in the context of indexed categories, is a 2-cell of 3 .  From now 
on we use the term in this sense and if we want to refer to a canonical map arising 
from the bicategory structure only we will call it bicanonical. 

Theorem. To each morphism W: A ~ B  in ~ there is associated a morphism 
o W  : A--*B and a canonical 2-cell rw : W--}QW. For W, W' : A - } B  there is at most 
one canonical 2-cell W ~  W' and there is one i f  and only i f  o W = o W ' .  

Proof.  We call 0 W  the reduced standard form of W and it can be obtained 
from the standard form of W by multiplying all the morphisms from S together 
(and then dropping any unnecessary identity which might arise). Thus, if a W= 
G ® ( F ®  (A ® (a ® (fl ® y)))), then 0 W= G ® (F® (A ® aft),)) if aft), ~ 1, and 
o W= G ®  ( F ® A )  if aft), = 1. If  W contains no (or only one) morphism from S, its 
standard form is already reduced. We define rw: W ~ o W  by first finding a 
bicanonical map W-* t ~ ®  (al (~) (RE ~) ("" (~) al))), where I~ is in standard form 
and contains no morphisms from S, and the a i are morphisms from S none of 
which are identities (unless W is of the form r111 for I e  S). I~ may be empty or l 
may be 0, but not both. Now multiply all the a ' s  together starting from the right. 
This gives l - 1  maps containing a single d each, whose composite we call d. It pro- 
jects to an identity in  ~.  Then, if alRE"" an #: 1, 

bican d 
r w =  W ' ~'~r~)(al ~ ) (a2 (~) ( ""  ( ~ ) a l ) ) ) '  ~-'r(~)(ala2 "'" a/) 

and, if a l a2""  an = 1, 

bican d 
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Clearly the rw are canonical, so if o W = o W ' ,  there is a canonical map 

r~vl, rw • W---, W'. Conversely, by examining the domains and codomains of  the 

elementary canonical maps (those containing only one instance of a, b, c or d)  we 

see that if there is a canonical map W ~ W', then 0 W= Q W'. 
We will show the uniqueness of the canonical map W --* W' (under the assumption 

that ~ W= Q W') by showing that 

W , W' 

(,) r~, l rw, 

o W  o W '  

commutes for any canonical x. 

If x is bicanonical, then g :=  - ' ' W ,  l=  l ,  and a i = ai, otherwise W and W' would 

not have the same standard form. Thus we get a commutative diagram 

K 
W , W '  

bican bican 

g:@ (a~ @ (--- @ a/)) = W@ (al @ ('" ® al)) 

which, if followed by d (and bg, if necessary), gives rw,X. = rw. 

It is now sufficient to show that (*) commutes for maps x involving a single in- 

stance of  d and no a, b, or c, since every canonical map is a composite of such maps,  

their inverses, and bicanonical ones. So assume that x is of  this form, i.e. a tensor 

product of  d•, z with a number of  identity 2-cells and with parentheses placed in 

some manner.  A bicanonical map can be found to rearrange the parentheses in K 
arid drop all identity 1-cells except those involving ,fl and y, in such a way that 

becomes 
v = g:® (a~ @ (az ® (..- ® ((/~® y) ® (--. at)D)) 
/ 

,~.] I ®(I ®(I ®(.-. ®(dB, v ® (.--I))))) 

v '  = W@ (~  @ (a2 @ ('" @ (/~y @ ('" a:))))) 

where g :  is as before and no a: is an identity. The bicanonical map is natural in its 

variables so 
K 

W , W '  

t 
V , V '  

/l 
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commutes, and since (.)  commutes for bicanonical maps it will commute for x if 

and only if it does for ~,. 
In calculating rv  and rv,, the bicanonical maps come  from rearranging paren. 

theses between maps from S and dropping identities also from S. The only situation 
where these do not project to identities in ~3 arises when there is only one map from 

S and it is an identity. In all other cases ( . )  commutes because all maps involved 
project to identities in ~3, except possibly for a b~v tacked on at the end. The only 

other cases are when 2 is 

g Z ® d :  I ~ ®  ( # ®  y ) ~  t ~ ® f l y  

and f l=  y =fly = 1 or fly = 1, p, y~: 1. It is easily seen that  ( ,)  commutes in these cases 

too. [] 

We now introduce some notat ion which will be useful in our calculations with in- 

dexed categories. If  W and V are morphisms A ~ B  in ~ we write W° = • V to mean 

that  there is a canonical 2-cell W--, V or equivalently Q W = Q V .  If  f :  W--* W' and 

g : V ~  V' we write f .  = -g if W.  = • V and W ' .  = ° V' and 

f 
W , W '  

can [ can 

7 ~ V' 
g 

commutes. We write g - f  only if W ' ,  = • V and in that case 

g . f = ( W f , W can g ") . . . . . . . .  ' V ~-:V . 

f 
Finally, if U° = • W and U ' - = - W ' ,  we write . f °  : U - - , U '  and also U .  , .  U'  to 

represent the 2-cell 

can f can 
U - - - " ~  W , W "  : ~.U'. 

The following proposition lists some of the main properties of  these concepts. In 

these statements it is assumed that  the domains and codomains match up so that 

the expressions make sense. 

Proposition. In the fol lowing statements f ,  f l , f z ,  g, gl, g2 
~ ,  a, fl, y are morphisms in S, and F is an indexed functor.  

(1) f l . = . f 2  and g l . = - g 2  = g x . f l . = . g z . f z ,  

(2) f l . = - f 2  = F 1 ( f l ) . = ' F 1 ( f 2 ) ,  

represent 2-cells in 

(3) g l ' = ' g 2  = a*(gl)°='Ot*(g2),  
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(4) 

(5) 

(6) 

(7) 

(8) 

:9) 

Ft(g . f )  = FI (g) .  F 1 ( f ) ,  

ot*(g . f )  = ct *(g) . a * ( f ) ,  

or,O= y = f l * a * ( f ) .  = .  y* ( f ) ,  

l~ ' ( f ) -  = . f ,  

o t*F t ( f ) .  = . F;oe*(f) ,  

• f . . . .  f .  [] 

The relation • = • may be read 'is canonically equivalent to' .  

Remark. An alternate way of dealing with coherence for indexed categories, as 
B6nabou has pointed out, would be to pass to the corresponding fibration with a 

cleavage, where universal properties of cartesian morphisms would prove each 
diagram of canonical morphisms commutative. More on fibrations in this context 

can be found in [3]. 

5. 1"he coherence theorem at work 

~o 0o 
id 

C = (C2  ; C1 ' , Co) 
nl 01 

be a category object in S. Among other things this means that 

( i)  Oono=Ooy, 

(2) 01n I = 0 1 y  , 

(3) Oonl =Olno, 

(4) 0oid = 1 co = 01 id. 

Definition. If  ~ '  is an indexed category, then an internal diagram of type C in ,~/ 
is a pair (A, a) with A an object of  A c° and a : O~A ~O~A in A cl such that 

(1) i d * a . = .  IA, 

(2) ( n ~ a ) . ( n ~ a ) . = . y * a .  

2"his definition may seem somewhat mysterious at first but we are thinking of a 
functor C-- ,~,  and there is a more or less mechanical means of translating defini- 
tions (and maybe even proofs) from ordinary category theory to indexed categories. 

Let 
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The idea is to express the definition (or proof)diagrammatical ly  in terms of 
category objects in some sufficiently large category of  sets (the Mitchell-B6nabou 
language is a machine for doing this), and then use cartesian closedness to translate 
these diagrams into a version which uses the basic elements of indexed categories 
(families, substitution, indexed functors, etc.). There may be several ways of doing 
this and only practice can tell which is the 'correct way'.  There could be more than 
one correct translation, each expressing different aspects of the same concept. Now 
generalize to indexed categories and insert the unique canonical maps for which the 
formulas make sense. 

Thus a functor C--*A in Set consists of an object function and a morphism func- 
tion which preserve domain, codomain, identities, and composition, i.e. we have 
functions F0 : C0~Ao and F 1 : Ct --'A1 such that 

x o ao 
y id 

C 2 ~ C l ' :  , C  0 

(Fl 1to, F1 lrl ) FI FO 

no Oo 
] l  }. , 

y id 
A l  ×AoAI ~ A1 ' , Ao 

nt Ol 

commutes in the well-known sense. We can't generalize a function F0 : Co-'Ao to 
indexed categories, so we transpose and get l ~ A 0  c°, i.e. an object A of A c°. 
Transposing F1 :CI---'A1 gives us I ~ A  cl i.e. a morphism a of A c'. The com- 
mutative diagrams (i=0, 1) 

Fo 
Co ' Ao 

C] F~ , A1 

transpose to give 

J 
1 

AC0 

A c, 

A0 



Coherence for bicategories and indexed categories 75  

i,e. dom(a) = O~A and cod(a) = O~A. Thus a : O~A ~O~A. Similarly, the preservation 
of identities gives id*(a)--1 A . The condition 

becomes 

F1 
C1 ' Al 

l t 
C2 (Flno, Flnl ) ~AI×AoAI 

A c , 

1 

(Al XAo A1)c2 

AC2 

where x followed by the isomorphism (A 1 XA0 A1) c2 -- 'Af2 XAf: A c2 is given by 

a (n;, n~) AC 2 AC 2 1 ' A G ' ×AoC, . 

The inverse of this isomorphism followed by yc2 gives composition in A c2, so we 
get the condition (n~a)(n~a)= y*a. Inserting the canonical maps gives us the defini- 
tion of internal diagram. 

P r o p o s i t i o n  1. Indexed functors  F :,#-~ ~ carry internal diagrams o f  type C in ,# 
to internal diagrams o f  type C in ~. 

P r o o f .  L e t  (A,a) be an internal diagram in ~#. Consider (FC°A,.FC'a.)  where 
• FC'a ." 3~FC°A ~3~FC°A. Then 

Also 

id*(. FC'a . ) .  =.  id*(FC'a). =. FC°id*(a). = .  FC°IA = 1FC~, A. 

n~(. FC'a.)  • n~(.  FC'a . ) .  : .  n~(FC~a) • n~(FC'a) 

• =.  FC°n~(a). FC°n~(a). =. FC°(n~(a). g~(a)) 

• =.  FC°y*(a). =.  y*(FC'a). =. y*(° FC'a o). 

Thus (FC°A, .FC'a . )  is an internal diagram of type C in ~.  [] 

This calculation may be read as a set of instructions for inserting canonical 
morphisms; the result is a diagram with 15 morphisms which commutes in virtue 
of the commutativity of 10 smaller diagrams. 
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Our 'machine' can also be used to translate the definition of natural transforma. 
tion t : F ~ F '  into the following definition. 

Definition. If  (A,a) and (A',a') are internal diagrams of type C in A, then a rnor. 
phism f :  (A,a)~(A',a')  is a morphism f :  A ~ A '  in A c° such that 

a~A 

a~A 
arf 

,0~A' 

a' 

'a~A' 

commutes. 

Proposition 2. l f  f :(A,a)~(A',a')  is a morphism of  internal diagrams and F 
is an indexed functor ,~:~t ,  then FC°f is a morphism of  internal diagrams 
(FCoA, . FC~a . )~  (FCoA ; .  FC~a'.). 

Proof.  Apply F c' to the diagram of the definition to get 

Fc ,a~A  ,, FC'aj f  , FC, O~A , 

Fc, O'~A ........ FC, O~f ' Fc, O'~A , 

which gives 

a~FCoA .,,,0 ~)Fc°f 

FC~a 1 

a'~FCoA 
a~FCof 

which is what we wanted. 

, a ~ F C o A  , 

FC, a , 

, O~FCOA ' 

[] 

An internalfunctordp : D ~ C  between category objects in S consists of three mor- 
phisms Oi" Di--* Ci (i = 0, 1, 2) such that 
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D2 f D~'  ~ D O 

t 
c2 fc , 

commutes in the usual sense. 

proposition 3. I f (A,  a) is an internal diagram o f  type C in ~/ and 4): ©-+C is an in- 
te:~,,at functor between category objects, then (qb~A,. ¢)Ta .) is an internal diagram 
of type © in ~, where .OTa. "O~(p~A--,O~$~A. 

Proof. 
i d * ( - q ~ a . ) .  = - i d * O ~ a . = . q ~ i d * a . = . ~ O ~ l  A = 1~ A . 

. ¢ 7 a . )  . = .  

• =.O~y*a.=.y*ck~a.=.y*( .O~a. ) .  [] 

We now give a more complicated example where it is necessary to keep track of  
the words involved. We want to define the indexed functor category ,~/~ and show 
that the evaluation functor E :  :;2× ,~"~-~,~/is indexed. For this we need some pre- 
liminary results. We omit most of the proofs which are easy verifications. 

If X is an object of $ and .~ an indexed category, then A x can be made 
into an indexed category. The definition is easily guessed by generalizing the 
situation for sets. Let (AX)~=A x×1 and for a : J ~ l  let a*:(AX)l--*(AX)J be 
( X × a ) * :  Ax×I-~A x×]. The q~a,~ and ~i for A x are taken to be the ~Ox×a,x×B and 

~x×i  for A respectively. 
If ~ : Y ~ X ,  we can make ~*: A X ~ A  Y into an indexed functor by defining (~.) i  

to be (~x I)*. The 0,~ for ~* is given at A 6 A  x×x by the canonical morphism 

Oa(A) = can : (Y × a)*(~ x I ) * ~ ( ~  x J)*(X x o0". 

Condition (F), when evaluated at A, becomes commutativity of  a diagram contain- 
ing only canonical maps between words whose reduced standard form is (~ × afl)*A. 
It commutes by virtue of  the coherence theorem. 

If Z ~  Y ~ , X  are morphisms of S, then q~,~" r/*~*--*(~r/)* extends to an in- 
dexed isomorphism, given at I by q~¢×LpT×~- 

We now define the indexed functor category ~ .  What should (~J ~)t be? For 
category objects in Set an object of (An) ~ can be viewed in any of the equivalent 
ways 

1 ~ (A B)! 

I ~  A ~ 

B x I - ' , A  

B ~ A 1  
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The last line generalizes to indexed categories and so we use this as our definition. 
Thus (A~') I is the category whose objects are indexed functors :~2 ~ ,z / I  and whose 
morphisms are indexed natural  t ransformations between them. For a . J ~ I ,  
a * "  (A ~)z--,(A~) J is given by composition with the indexed functor a * :  : ¢ t ~ j .  
Thus, if F :  :~ ~ / z  is an object of  ( A s )  z, then 

a*(F)= a*F= ( ---~,~'F l__..~ .\  

and if t : F ~ F '  is a morphism of  (A'~) I, then a * ( t ) = u * t .  Since S-inb is a 
2-category, t~* is indeed a functor.  We define Oa,~ : f l * a * ~ ( a P )  * at F by 

¢a, •(F) = O~, ~F : f l*a *F ~ (aft) *F. 

Similarly ~ I (F)  = ~gtF. Checking (IC1) and (IC2) is immediate once we evaluate at 
F and raise to the I. 

Define a functor E I :  B t x ( A g ) I ~ A  x as follows: For B e  :~x and F :  ,?3 ~ / I ,  let 
EZ(B, F) = 8~FI(B), where ~I : I ~ I  x I is the diagonal morphism. E I is easily seen 
to be a functor if we set EZ(b, t)= 8~(tZ(B')FI(b)) for b :B  ~B '  and t:F-~F'.  For 
a : J ~ I  we define Ou(B, F):a*EZ(B,F)-,EJa*(B, F) to be the morphism 

a.O~F~(B ) c a n  g~'(tzx J)*(l× a)*Ft(B) J~(a×J)*Oa(B)'t~(Ot X J)*FJ(a*B). 

Here the canonical map  is between the words (FZ(B)®Ot)®ct and ((FZ(B)® 
(I × u)) ® (a x J) )  ® fig, whose letters are pictured in the diagram 

J ,I  

aj I x  I 

J x J  ~ I x J  / a x J  

Ft(B) 

Note that,  although g~(axJ)*Oa(B) appears to be canonical, it is not. We may 
consider (u x J)*O~(B) to be (a*)JO~(B) and as such it is canonical between two 
associations of  

a B F I a*  
J ~I---+ ,:~ ---+,~/ ---+ ~'J 

but there is no way to attach t~j" J--*J×J and make the whole thing canonical. 
Thus g~ is merely a functor applied to a canonical map.  

Proposition 4. The E z and 0 a defined above are the data for an indexed functor 
E" ~ ×,~ ~ ~z/ .  

Proof .  We wish to check condition (F) for E, i.e. we want to show the commuta- 
tivity of 
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f l * a * E I ( B , F )  

fl*Oa(B, F) 1 

f l *Eg(a*B ,  u ' F )  

Old(a'B, a'F) 

~Pa, I~(EY( B, F)) 
, (u f l )*Et (B ,  F )  

O~p(B, F) 

EK(t~*o~*B, f l*c t*F)  , EK((oO~)*B, (a f l )*F)  . 
EX(q~u, B(B), q)a, ~F) 

So as to avoid con fus ion  about  which maps are canonical  we must  view the do- 
mains and  codomains  as words.  Thus  we int roduce the fol lowing no ta t ion  which 

allows us to read the words  literally. 

Let 
A t  = F t ( B )  : I x  I - ,  .~Y, 

A 2 =FJ(ot*B) : I x  J - "  .~, 

A3 = F K ( f l * a * B  ) : I x K + ,~/, 

A 4 = F K ( ( a f l ) * B )  : I x  K--" ,~/, 

a 1 = Ou(B) : ( I x  a)*A 1 ~ A  2, 

a 2 = OB(ct*B ) : ( [ x f l ) * A  2 ~ A3 ,  

a 3 = OaB(b ) : ( I x  afl)*A1 "-*A4, 

a4 =FK((/)a,B(B)) : A3--* A 4. 

With this  no ta t ion  the expression for Oa(B, F )  is 

i.e. 

Similarly,  

can 
a *~5~A t , f i ~ ( a x J ) * ( I x a ) * A  l 

Oc,(B, F ) .  = .  g ] ( u  x J )*al  . 

~ ( ~ x  J)*a 1 

0B(c~*B, a ' F ) -  = -  ~ ( f l  × K ) * ( a  × K)*a  2, 

Oa#(B, F ) -  = .  t ~  (ctfl x K)*a3 

, , ~ ( a  x J)'14 2, 

and 
EK(cpa, B(B), 4)~, BF)  . = .  g~(ctfl x K)*a4.  

Thus we want  to show that  

(fi~(afl × K)*a4) • (O~¢(fl x K ) * ( a  x K)*a2) • (f l*fi](a × J ) * a l ) .  = .  fi~(ctfl x K ) * a  3 

(we can leave off  the q~a,B(g~A1) on the right as it is canonical) .  
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Condition (F) for the functor F gives 

aaa2(I× f l )*a  I • = .  a 3 

o which we can apply d~(af lx  K)*. The result now follows from the resulting re- 
ation by making the substitutions indicated by 

~ ( a f l  x K)*a2 • =-  d~(fl x K)*(a x K)*a2 
md 

Fhus E::~¢ x ~.~/'~--,.# is indexed. 

O~(otfl × K ) * ( I  × fl)*al " = .  f l*~ ](o~ x J)*al  . 

[] 

Similar calculations show that E establishes an equivalence of categories 

S-inb(~, ,~,/~)--, S-irtb(:~ × ~, ,~) 

~ E ( l e x ~ ) .  

In this sense, E is the indexed evaluation functor. 
As B6nabou has pointed out, this result was incorrectly stated in [13, p. 611. In- 

teed, the isomorphisms in the statements of (1.1.1), (1.1.2), (1.1.3), and (1.1.4) 
~hould have been equivalences of categories. 
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